نگاشت های خطی حافظ معکوس پذیری روی *c– جبرهای با رتبه حقیقی صفر

thesis
abstract

در فصل اول و دوم تعاریف و قضایای مقدماتی را بیان می کنیم در فصل دوم نگاشت های خطی حافظ معکوس پذیری روی *c– جبرهای با رتبه حقیقی را بررسی می کنیم و در فصل چهارم نگاشت های خطی حافظ معکوس پذیری قوی مور- پنروز روی *c– جبرهای با رتبه حقیقی را بررسی می کنیم.ما نشان می دهیم که نگاشت های خطی حافظ معکوس پذیری روی *c– جبرهای با رتبه حقیقی صفر همریختی جردن هستند، علاوه بر این به بررسی نگاشت هایی که نوع خاصی از معکوس پذیری (معکوس پذیری مور- پنروز)را حفظ می کنند می پردازیم و نشان می دهیم نگاشت های خطی حافظ معکوس پذیری قوی مور- پنروز روی *c– جبرهای با رتبه حقیقی, *c– همریختی می باشند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نگاشت های حافظ ضرب صفر روی جبرهای باناخ

هدف اول این پایان نامه دسته بندی نگاشت های حافظ ضرب صفر روی جبر های باناخ می باشد. فرض می کنیم ‎ a‎ یک جبر باناخ نیم ساده دارای ستون ناصفر، ‎b‎ یک جبر باناخ یکدار و ‎t‎: ‎ a ? b‎ یک نگاشت خطی دوسوئی حافظ ضرب صفر باشد. می دانیم هر همریختی و یا حاصل ضرب هر همریختی در یک عنصر مرکزی وارون پذیر ضرب صفر را حفظ می کند. سوالی که مطرح می شود این است که آیا هر نگاشت حافظ ضرب صفر نیز به این صورت نوشته ...

نگاشت های حافظ ضرب صفر روی [c^1[0,1

فرض کنید c^1[0,1]‎ جبر توابع مشتق پذیر پیوسته از فاصله واحد ‎[0,1] ‎ به توی ‎ c‎ باشد. هدف اصلی این پایان نامه مشخصه سازی نگاشت های دو خطی پیوسته از c^1[0,1]× c^1[0,1]‎ به توی فضای باناخ x ‎ مانند ? است مشروط به این که اگر ‎ f,g?c^1[0,1] ‎ که ‎ fg=0 ‎ آنگاه ? (f,g)=0‎. عملگر خطی ‎ tاز جبر باناخ a ‎ به توی جبر باناخ b‎ را حافظ ضرب صفر گوییم در صورتی که اگر ‎ a,b? a ‎ و ‎ ab=0 ‎ آنگاه ‎ta....

15 صفحه اول

نگاشت های جمعی حافظ ضرب جردن صفر روی جبرهای عملگرها

اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.

15 صفحه اول

نگاشت های خطی حافظ معکوس پذیری تعمیم یافته

فرض کنید h یک فضای هیلبرت تفکیک پذیر با بعد نامتناهی و (h)b جبر همه ی عملگرهای خطی کراندار روی h باشند در این صورت اگر نگاشتی خطی، یکه ، دو سویی و کراندار از (h)b به (h)b داشته باشیم به طوری که معکوس پذیری تعمیم یافته را از دو جهت حفظ کند، آنگاه آن نگاشت، خود ریختی یا پادخودریختی است.

15 صفحه اول

نگاشت های حافظ رتبه 1 روی *c- مدول های هیلبرت

یک *c -مدول هیلبرت روی یک *c-جبر a یک مدول چپ m همراه با یک ضرب داخلی روی a است که در مولفه ی اول خطی ودر مولفه دوم مزدوج خطی است به طوری که m با نرم تعریف شده از ضرب داخلی یک فضای باناخ است.مساله حافظ رتبه یک مساله اساسی در مطالعه مسائل حافظ خطی است. *c-مدول های هیلبرت ابتدا توسط کاپلانسکی در سال 1953 به منظور اثبات درونی بودن اشتقاق های روی *aw-جبرها به کار گرفته شد.او ضرب داخلی فضاهای هیلبرت...

15 صفحه اول

نگاشت های خطی حافظ شعاع عددی روی جبرهای آشیانه

نگاشت خطی از جبر عملگرها را حافظ شعاع عددی گویند هرگاه برای هر a متعلق به دامنه ی جبری به طوری که w(a) نشانگر شعاع عددی می باشد. در این پایان نامه ما ثابت می کنیم که نگاشت خطی پوشا از جبرهای آشیانه بر روی خودش حافظ شعاع عددی است اگر و فقط اگر یک عملگر یکانی u و عدد مختلط از مدول یک وجود داشته باشد به طوری که برای هر یا یک عملگر یکانی u و یک مزدوج j و یک عدد مختلط از مدول یک وجود داشته باشد به...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023